Wednesday, 8 July 2009

General Relativity

General Relativity :
The second part of relativity is the theory of general relativity and lies on two empirical findings
that he elevated to the status of basic postulates. The first postulate is the relativity principle: local
physics is governed by the theory of special relativity. The second postulate is the equivalence
principle: there is no way for an observer to distinguish locally between gravity and acceleration.



Einstein discovered that there is a relationship between mass, gravity and spacetime. Mass distorts
spacetime, causing it to curve.





Gravity can be described as motion caused in curved spacetime .
Thus, the primary result from general relativity is that gravitation is a purely geometric
consequence of the properties of spacetime. Special relativity destroyed classical physics view of
absolute space and time, general relativity dismantles the idea that spacetime is described by
Euclidean or plane geometry. In this sense, general relativity is a field theory, relating Newton's
law of gravity to the field nature of spacetime, which can be curved.








Gravity in general relativity is described in terms of curved spacetime. The idea that spacetime is
distorted by motion, as in special relativity, is extended to gravity by the equivalence principle.
Gravity comes from matter, so the presence of matter causes distortions or warps in spacetime.
Matter tells spacetime how to curve, and spacetime tells matter how to move (orbits).
There were two classical test of general relativity, the first was that light should be deflected by
passing close to a massive body. The first opportunity occurred during a total eclipse of the Sun in
1919.











Measurements of stellar positions near the darkened solar limb proved Einstein was right. Direct
confirmation of gravitational lensing was obtained by the Hubble Space Telescope last year.
The second test is that general relativity predicts a time dilation in a gravitational field, so that,
relative to someone outside of the field, clocks (or atomic processes) go slowly. This was
confirmed with atomic clocks flying airplanes in the mid-1970's.
The general theory of relativity is constructed so that its results are approximately the same as those
of Newton's theories as long as the velocities of all bodies interacting with each other
gravitationally are small compared with the speed of light--i.e., as long as the gravitational fields
involved are weak. The latter requirement may be stated roughly in terms of the escape velocity. A
gravitational field is considered strong if the escape velocity approaches the speed of light, weak if
it is much smaller. All gravitational fields encountered in the solar system are weak in this sense.
Notice that at low speeds and weak gravitational fields, general and special relativity reduce to
Newtonian physics, i.e. everyday experience.

2 comments:

  1. Glad you like my blog. I found this explanation of general relavtivity quite helpful. Thanks a lot.

    Lois http://intuition-indepth.blogspot.com

    ReplyDelete